第135章 这还要证明?这还能证明?-《百家神通:从鸡兔同笼开始》


    第(1/3)页

    “平行四边形?这是……

    哦,就是将长方形拉开呀!”

    姜子淳懂了,随后她在灵魂空间中自己虚拟了一个长方形,然后拉着试了下,确实可以。

    而且对边也是平行的。

    嗯这个平行,按照书上的说法就是能平移的意思。

    这个姜子淳还是能看懂的。虽然她目前不知道这个平行四边形有啥用?

    而且这里还说正方形和长方形的两个对边也是分别平行的。

    接下来就是这个面积公式的证明部分。

    “割补法?

    将平行四边形的一个角割掉,然后补到另一边,凑成一个长方形,这样就可以按照前面的公式来计算了。”

    “这样确实可以。很好理解。”

    姜子淳点了点头。

    虽然书上还说了一句话,说这里面还有一个默认的前提条件,那就是一个图形的面积是其各个组成部分面积之和。

    要不然这种方法根本用不了。

    还说其实在求证长方形的时候就已经用到了这个默认条件。

    不过看到此处,姜子淳突然想起了前面的几个图形,先是正方形,然后是长方形,再然后是平行四边形。

    “这好像是一步步推导过来的。

    如果我没猜错的话,下一步肯定是要用平行四边形来推到其他的图形了。”

    说着,她看向了下一个图形——三角形。

    “果然是这样。用两个相同的三角形能拼凑出一个平行四边形来。这样就可以求出三角形的面积了。”

    看到书上的内容跟自己推测的一样,姜子淳露出了开心的笑容。

    那么很自然的,下一步就是用这个三角形来继续推演了。

    瞬间,姜子淳觉得自己可能已经把握住了这本书的方向。

    “诶,书后面还有为什么两个相同的三角形可以拼接出平行四边形的证明。这个我倒要好好看看,到底是怎么证明的。”

    给出任意三角形的面积公式后,这《几何》书中还介绍了其他计算方法。

    比如秦九韶的“三斜求积术”。

    这“三斜求积术”只要知道三角形的三条边的边长就可以通过计算求出三角形的面积。

    此处,书中还将这“三斜求积术”重新整理了一番,改为了用数学语言描述,并且给出了证明过程。

    当然,这里面还运用到了直角三角形的勾股定理。

    即直角三角形的斜边长的平方等于两直角边长平方之和。

    当然啦,这个勾股定理也是要证明的。

    这里路明远先是用了最容易理解的“加菲尔德证法变式”。

    也就是用直角三角形的两条直边之和作为边长,拼接出来一个正方形,此时里面的斜边也同样可以组成一个小的正方形。

    这样运用前面的三角形面积公式和正方形面积公式就可以很轻松的求出勾股定理了。

    看到此处,姜子淳顿时惊呼出声来:

    “还能这么证?这么简单?

    而且里面竟然也用到了代数的知识。看来这代数和几何的关系比我想象的深多了。”

    此时,她似乎想起了自己当初学“青朱出入图”的恐惧。

    当时那幅图上的朱方和青方可把她都给看晕了,什么青出、青入、朱出、朱入的?可晕了。她当初学了好久才彻底学通。

    但是此时看到这个更直观的图形,姜子淳才一下子恍然大悟。

    “这下教勾股定理的时候就好教多了。”

    “证明的方法还有很多很多?

    这个嘛,之后我也试试!”

    看到书上建议大家用多种方法来证明勾股定理,姜子淳自然跃跃欲试,如果自己发明了一种新的证明方法,那岂不是可以名传万古了?

    如果通用性够强的话,说不定可以上数学书呢。那到时候……

    单是想想,姜子淳都觉得激动。

    如果她所料不错的话,这勾股定理的证明以后肯定是一个大热门。

    对于自己的直觉,姜子淳可是很有信心的。

    有了三角形的面积公式,那么接下来就可以很轻松的计算出任意多边形的面积了。

    甚至据此,也可以推导出圆的面积公式。

    “这里用的是割圆术?”

    看到书上运用圆的内接正多边形的方式来无限逼近圆的面积,姜子淳一下子就看出了对方所用的方法。

    毕竟她原来可是学过这些的。

    所以对于刘徽先生的“割圆术”的大名,她如雷灌耳。

    当然,也被折磨的不轻。

    甚至直到现在,每年还有很多学生会挂在这上面呢。

    收起心思,姜子淳继续看书。

    此处证明的时候,用的是内接正多边形和外接正多边形来从两个方面来逼近,确认面积的下限和上限,最后算出当边无穷大的时候,两个的极限值差不多是相等的,而这也就是圆的面积。

    毕竟可以很轻松的看出,圆的面积是一定大于内接正多边形而小于外接正多边形的。

    此时两个值唯一了,那自然就是圆的面积了。

    “原来是这样啊!懂了懂了!”
    第(1/3)页