第86章 视觉新范式-《重生之AI教父》
第(2/3)页
视觉顶会有三个,分别是本次孟繁岐参加的国际计算机视觉大会,iccv。
还有欧洲计算机视觉会议,eccv,一个偏欧洲一点的会议。
这两个都是两年一办,所以一年也只有两次这样国际顶级的会议机会。
唯一一個每年都举办的,是cvpr,国际计算机视觉和模式识别大会。
但它的举办地点基本上都在美国,签证方面经常会有一些问题。
本次的机会比较难得,当然要多宣传一下自己的工作。
“基于dreamnet的残差思想,不仅在图像的识别分类上取得了巨大的突破,我同时也衍生出了它的一些变体,比如生成式网络,检测网络,还有分割网络。”
识别分类有竞赛结果,生成式网络的论文已经放出,而检测的网络随着白度的发布会,大家也已经了解它的威力。
至于分割网络,则是这两天随着dreamnet的论文一起放出的u-net工作。至此,可以说视觉类几大任务的基础范式已经被孟繁岐奠基。
今后不论是识别分类,分割检测,还是迁移生成,都很难绕得开这些轻便又好用的办法了。
“可以看到,这种思想席卷视觉领域之后,使得目前主要的研究方向都有了颠覆性的突破。”
孟繁岐将这几篇论文的主要试验结论摆在了幻灯片的第二页,就是要先以结果震撼众人。
“显然,这些算法在诸多领域都与第二名拉开了巨大的差距,而相当一部分的功劳应当属于残差思想对网络深度的革命。”
“在10年11年,我们仍在使用人工设计的sift,hog还有svm,12年,阿里克斯的八层alexnet取得了巨大的突破。”
“而今年,残差思想引发的深度革命,使得训练150+层的神经网络成为可能。”
“深度神经网络是很多任务场景,尤其是视觉任务场景的基础引擎和骨干,这也是为什么它能够迅速影响几个主流的任务。”
第(2/3)页